Understanding the Cell Danger Response: A Comprehensive Overview

Since early 2020, I have worked with patients with spike protein injuries, either from COVID-19 or the vaccines. Now and then, I’ve observed a specific treatment for a spike protein injury have a rapid effect that was so dramatic it would have been difficult to believe it had happened had I not witnessed it firsthand. Whenever I spotted a treatment doing that, I asked, “Why did this happen?” Over time, I realized two mechanisms appeared to be able to account for almost every case where I observed this happen. The first was that impaired fluid circulation in the body was restored, most commonly by restoring the physiologic zeta potential (something the spike protein is uniquely suited to inhibit). Since this is a complex but relatively unknown topic, I’ve worked to explain what zeta potential is, how its disruption creates illness by impairing fluid circulation throughout the body, and the methods I know of which can restore it. Note: In parallel to doing this, I also discussed the fourth phase of water (something also critical for the health of the body) as the two concepts are deeply interrelated. The second was that the Cell Danger Response (CDR) was deactivated. Since there is much more awareness about this (still relatively unknown) concept in the integrative medical field, I felt zeta potential needed to be covered first. Nonetheless, the CDR is an essential concept to understand, and like zeta potential, it plays a foundational role in explaining and addressing many of the complex conditions we face today. Before I go further, I would like to acknowledge two of my colleagues who have a great deal of experience working with the CDR that assisted me in drafting this series (and both independently observed that the COVID vaccines triggered the CDR).

What Is the Cell Danger Response? For cells to survive, something has to protect them from the innumerable threats they encounter. In complex organisms, we typically assign that role to the immune system. In contrast, in single-celled organisms (e.g., bacteria), it’s fulfilled either by them putting protective agents into their environment (e.g., bacteriocins to kill enemy bacteria) or them evolving resistance to the danger they are facing (e.g., antibiotics). However, those are not the only options. In a previous article where I tried to explain the potential consequences of bacteria DNA being found in the vaccines, I touched on an important concept. When bacteria (and fungi) are placed in a dangerous environment, in addition to those that die, some will transform into a form better suited to survive the hostile environment (this is the most well-recognized with spore-forming bacteria). Note: Since those forms are often more likely to cause diseases and resist antibiotics, it can be counter-productive to continue addressing them with the same antibiotics, and different approaches are needed to aid patients with those infections. When cells are stressed by their environment, they also transform into a more defensive state primarily mediated by the cell’s mitochondria (which are essentially bacteria and able to rapidly adapt to changes in their environment). This process has been observed by many (e.g., some call it the integrated stress response), and I believe the process is the most comprehensively described by the CDR. The CDR concept is frequently credited to Robert Naviaux (someone I consider a genius). He integrated all of the existing scientific knowledge on cellular adaptations, utilized a variety of established approaches (e.g., genomic analysis), and, most importantly, used an innovative but relatively unknown diagnostic method, metabolomics, to map out the CDR. Metabolomics uses mass spectrometry to identify every biomolecule present in a sample of blood, which is both quite feasible and provides an in-depth understanding of the body which, to my knowledge, cannot be obtained with any other existing technology (e.g., the endless lab tests that provide a narrow snapshot of the body which may not have any correlation to the patient’s symptoms). This is how Naviaux described the merits of the technology: “First, fewer than 2,000 metabolites constitute the majority of the parent molecules in the blood that are used for cell-to-cell communication and metabolism, compared with 6 billion bases in the diploid human genome. Second, metabolites reflect the current functional state of the individual. Collective cellular chemistry represents the functional interaction of genes and environment.” The process of the CDR essentially is as follows: 1. Something stresses the cell. 2. Mitochondria within the cell rapidly detect this stress (e.g., before the stressor can kill the cell). This detection, Naviaux argues, is due to electrons that previously were available to mitochondria being diverted to the stressor (e.g., an invading virus hijacking the cell to reproduce, a heavy metal being present, or many of the harmful [electron stealing] chemicals we are exposed to now), which creates a voltage drop in the mitochondria. 3. The mitochondria then reduce or terminate their primary function (creating energy in the form of ATP for the cell) and switch from an anti-inflammatory to a pro-inflammatory state (macrophages also switch from an anti-inflammatory to a pro-inflammatory form). 4. Because the mitochondria producing ATP uses up a lot of oxygen, once that production is reduced (or becomes incomplete) and the mitochondria shift to producing different biomolecules, the available oxygen in a cell rapidly increases. For context, mitochondria contain 1500 proteins tailored to meet the needs of each cell type and catalyze over 500 different chemical reactions in metabolism. These mitochondrial effects (particularly the elevated oxygen) cause the following to occur: Production of complex proteins (polymers) is reduced, which viruses require to reproduce. Protective changes in the behavior of the whole organism (e.g., increased tiredness that induces the sleep needed to facilitate healing or a desire to isolate so the infection is not transferred to other members of their group). Antiviral and antimicrobial substances are released inside the cell. Warning cells in the vicinity that a danger is present. Increased consumption (autophagy) of components within the cell, including the defective parts of the mitochondria and the mitochondria themselves. Changes in gene expression and mobilization of parts of cellular DNA. The cell membranes stiffen so things are prevented from passing through it. Note: A long time ago, a mentor versed in some of the most remarkable forgotten sides of medicine showed me an ancient test his teacher used to evaluate if the body was consuming oxygen properly (something they believed was critical for proper health). The test was known as the blood crenation test and assessed the degree to which cells would change their size once placed in a hypertonic solution. After I learned about the CDR, I realized that the test detected if the membranes had stiffened due to an active CDR and mitochondria, in turn, not correctly consuming oxygen. That stiffening is greatest during CDR1 and begins to soften during CDR3 (explained below). I found this fascinating because the therapy (designed to treat numerous illnesses through restoring the oxidative metabolism of cells) he used the blood crenation test for had two stages of treatment, and the second stage could only be used once the first stage had sufficiently softened the cell membranes. In the recent series on zeta potential, I argued that a key reason for why zeta potential disruption has become a root cause of so many illnesses is due to the physiologic mechanisms for maintaining zeta potential having evolved in an era where the human body faced far fewer zeta potential disrupting toxins. Because of this, the baseline zeta potential our body is designed to maintain (keep in mind that an excessive zeta potential also creates problems) is often not strong enough to counteract those harmful environmental influences. The CDR likewise evolved in an era when humans faced far fewer stressors and is not appropriately calibrated for the modern world. For example, when the CDR is activated, the oxidizing environment causes cells to sequester rather than excrete heavy metals. This is a problem since heavy metals (which are now common in our environment) are both a common cause of chronic illness and a trigger for the CDR. When Naviaux originally mapped the CDR out, he thought that it had one phase, but in time realized it had three different phases, the initial response, a proliferative phase (which rebuilds tissue), and then the cell beginning to return to its initial function: Naviaux’s central argument is that while the CDR is a normal adaptive response, it can become dysregulated due to chronic or excessive stress, leading to a host of health issues. Understanding and addressing both zeta potential disruption and the dysregulated CDR are crucial for addressing many complex health conditions.

FOLLOW US ON GOOGLE NEWS

Read original article here

Denial of responsibility! Swift Telecast is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – swifttelecast.com. The content will be deleted within 24 hours.

Leave a Comment