Genetic study finds early summer fishing can have an evolutionary impact, resulting in smaller salmon

Credit: Pixabay/CC0 Public Domain

Atlantic salmon are caught by fisheries when the fish are migrating to spawn. A new study led by the University of Helsinki explored how salmon caught at different times during their spawning migration differ from each other genetically. The study on wild salmon in the northern Baltic Sea revealed that especially in the early part of the fishing season, fishing strongly targets salmon carrying a “large salmon genetic variant.” The variant guides Atlantic salmon to grow large and to mature at an older age, which is an important trait for the fishing and viability of salmon stocks.

The findings are published in the journal Evolutionary Applications.

Genetic analyses on thousands of wild salmon caught between 1928 and 2020 by fisheries from the northern Baltic Sea region showed that regardless of the year, fishers caught salmon with the “large salmon variant” more often in the early than late fishing season.

“This finding suggests that the timing of fishing may cause evolutionary changes in the age and size that Atlantic salmon reach before maturation. Intensive fishing especially in the early fishing season may lead to the ‘large salmon variant’ becoming rarer and to salmon spawning at a younger age and smaller size,” explains the lead author of the study Antti Miettinen, Ph.D., from the Faculty of Biological and Environmental Sciences at the University of Helsinki.

This kind of evolutionary impact resulting in fewer large salmon would be bad news for the diversity and viability of salmon populations and for fishers who highly value large catches.

Valuable information for conservation

The results of the study help to understand how the timing of evolutionary selection pressures induced by human actions, in this case fishing, can affect wild fish populations and properties important to them.

The largest wild Baltic salmon stock spawns in the Tornio and Kalix Rivers in northern Finland and Sweden and has high ecological and societal value. The study found that early-season fishing at sea and in the Tornio River caught salmon that originate from upstream sites in the river system more often than did fishing in the later parts of the season.

“Fishing in the early part of the fishing season targets salmon that spawn in the headwaters of these rivers, which should be accounted for in fisheries management so that it ensures the viability of these salmon populations,” Miettinen says.

Over the years, the timing of the legal fishing season in the Baltic Sea and along its salmon rivers has sparked heated debate and questions on national and international levels. The published study addressed a particular concern: whether fishing in the early season can reduce the mean age and size of Baltic salmon.

“By analyzing the genetics of samples collected across the northern Baltic over many decades, this study shows how human activities could cause evolutionary changes in wild salmon populations,” says senior researcher and senior author of the study Victoria Pritchard, Ph.D., from the University of the Highlands and Islands.

“This study is a fantastic example of using genetic approaches to answer important questions about the conservation and management of biodiversity. The genetic tools designed during this project can be used to monitor the future impacts of fishing regimen changes,” Pritchard says.

The research was done in collaboration with the University of Helsinki, Natural Resources Institute Finland (Luke), Swedish Agricultural University (SLU) and the University of the Highlands and Islands (UHI).

The samples analyzed in the study were from the archives of Natural Resources Institute Finland (Luke) and the Swedish University of Agricultural Sciences (SLU). The samples were collected between 1928 and 2020 by fishers along the Tornio and Kalix Rivers and coastal Bothnian Bay in the northern part of the Baltic Sea.

More information:
Antti Miettinen et al, Temporal allele frequency changes in large‐effect loci reveal potential fishing impacts on salmon life‐history diversity, Evolutionary Applications (2024). DOI: 10.1111/eva.13690

Provided by
University of Helsinki


Citation:
Genetic study finds early summer fishing can have an evolutionary impact, resulting in smaller salmon (2024, May 8)
retrieved 8 May 2024
from https://phys.org/news/2024-05-genetic-early-summer-fishing-evolutionary.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

FOLLOW US ON GOOGLE NEWS

Read original article here

Denial of responsibility! Swift Telecast is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – swifttelecast.com. The content will be deleted within 24 hours.

Leave a Comment